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Abstract. Variable-range-hopping conduction in lightly doped semiconductors is analysed 
when strong magnetic and electric fields are applied in the crossed configuration. It is shown 
that the temperature dependence of the critical electric field above which the transport 
becomes activationless is a power law that depends on both the shape of the density of states 
spectrum and the asymptotic behaviour of the electronic wavefunction. An experimental 
study of transport in n-type GaAs under these conditions is in agreement with a model of 
hopping of exponentially localised and interacting electrons in a system where intermediate 
elastic scattering events are important. 

1. Introduction 

In lightly-doped semiconductors, the electronic wavefunctions are strongly localised 
around the impurities, with an envelope which decays exponentially in space [ 11 accord- 
ing to 

W r )  - exp(-r/6) (1) 
which we will call hereafter EL (or the exponential localised wavefunction for later 
reference) where 6 is defined as the localisation length of the wavefunction. In these 
materials, at low temperatures, charge transport is by hopping [2] with a hopping rate 
depending on both the probability of tunnelling between sites i and j defined as 

P t u n  - lWi I~ j ) l *  - ex~(-2rv/6) 

and the probability of an activation caused by the absorption of a phonon of energy A 
of 

Pact - exp(-A/W.  
When T+ 0, the impurity level distribution becomes imortant and conduction is 
governed by variable-range-hopping [2]. In this case, hopping occurs between impurity 
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sites that lie close in energy, and the maximum of the total probability ptot = ptu,,pact, 
proportional to the conductivity of the system, changes with temperature according to 

Ptot(T) - exP[-(To/T)Xl - o(T).  
Here X = 4 for a non-interacting system with constant density of states at the Fermi level 
[2], or X = 4 for an interacting system with a parabolic Coulomb gap in the density of 
states at the Fermi level [3]. 

In variable-range-hopping theory, the maximum probability for a hop, and so the 
most likely one, occurs for distance and energy equal to the optimum hopping length 
and optimum phonon energy respectively. For exponentially localised impurity electron 
wavefunctions (type EL), the optimum hopping length R decreases with temperature, 
as 

R ( T )  = 5(To/T)x  (2) 
while the optimum phonon energy involved, A ,  follows A ( T )  = / C T ( T / T ) ~  (see [2]). 

A strong magnetic field B compresses the wavefunctions, and the resulting reduction 
of the overlap between them leads to a large positive magnetoresistance. In the absence 
of scattering, it is suggested that Y(r) becomes similar to the wavefunction of a free 
electron in a magnetic field and is of the Hasegawa-Howard type [4], which, in cylindrical 
polar coordinate notation, is 

W P ,  91, 2 )  - exp(-p2/4A2 - lzl/E) ' (3) 
(referred to as HH) where A = (h/eB)'/2 is the magnetic length. A wavefunction of the 
form 

W P ,  91, 2 )  - exP(-P2/4E: - z2/455> (4) 
where EL and E, ,  are the localisation length in the direction perpendicular and parallel to 
the magnetic field respectively, was proposed by Yafet, Keyes and Adams [5] and is 
referred to below as a YKA wavefunction. 

Since in variable-range-hopping the optimum distance R is greater than the average 
distance between impurities, an electron may be scattered elastically by several 
impurities in the course of a single hopping event. Scattering can alter greatly the 
asymptotic behaviour of the EL wavefunction in strong magnetic fields, which becomes 
[61 

W P ,  91, 2 )  - exP(-P/b - kl/n (5) 
(referred to as SE) where b = A3/2E1/49-1/4 and A ,  5, f' are the magnetic, localisation and 
scattering lengths respectively. 

The temperature dependence of the conductivity of the material in strong magnetic 
fields is expected to be expressed by a relation of the form 

o(T)  - exP[-(To/T)Xl (6) 
with a value X which depends on the asymptotic behaviour of the wavefunction. A 
measurement of the relation o( T )  can therefore allow the determination of Y ( I )  at large 
distances. In the present paper, an alternative, independent set of measurements taken 
under conditions of crossed strong magnetic and electric fields is shown to also enable 
the characterisation of the asymptotic behaviour of the wavefunction perturbed by the 
magnetic field. In other words, we attempt to distinguish between the EL, HH, YKA and 
SE forms of the impurity electron waveform from an interpretation of the experimental 
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Figure 1. Electron hopping from an initial site i to 
a final sitej a distance R away, in the presence of 
an electric field F. The energy involved in the 
transition comprises a contribution of value A due 
to phonon absorption and the energy provided by 
the electric field which is of magnitude eFR. A 
transition is activationless when A = 0. On the 
figure, the full circles are occupied states and the 

- R -  r open circles are empty states. 

data. The approach is explained in section 2 and relevant experimental data are reported 
in section 3. The conclusion related to the present study is summarised in the last section. 

2. Theory of the critical electric field 

2.1. Formulation of the problem 

In the presence of an electric field the optimum hopping distance R( T ,  F) and phonon 
activation energy A( T ,  F )  will depend on both temperature and electric field. In the 
limit of very low source-drain electric field F, the energy necessary for a transition to a 
higher energy state to occur is provided by phonon absorption. If the magnitude of the 
electric field is increased, a regime is first reached where the energy involved comes both 
from phonon absorption A and electrical energy eFR (see figure 1). In a field above a 
critical value F,, phonon absorption is no longer necessary and the electrons may gain 
all theirenergyfrom theelectricfieldonly, that is A( T ,  F > F,) = 0.  Conduction becomes 
temperature independent and transport is said to be activationless. In this case the 
current can be expressed in the form [7,8] 

W )  = Io exP[-(Fo/F)Sl (7) 

independent of the electron impurity wavefunction Y(r) and density of states. S in (7) 
equals X in (6). In the absence of magnetic fields and scattering the wavefunction will 
be exponentially localised (i.e. an EL type wavefunction of the form of (1)) and S = X 
with F = 1.4 kTo/eE,  where To and Xare defined in (6). 

In crossed magnetic and electric fields, the current remains an exponential function 
of the electric field, expressed by (7), but with a value of S sensitive to the shape of the 
wavefunction at large distances, and such that S(F  > F,) = X(F+ 0). Calculated values 
of X (or equivalently S) for various wavefunctions and for the cases of non-interacting 
and interacting systems are reported in the literature, and are listed in table 1 [9]. 

The optimum hopping length is also strictly electric-field-dependent in the high-field 
regime with 

REL(F) = E(Fo/F)S.  (8) 

The transition from thermally-assisted transport to activationless conduction occurs at 
a critical value of the electric field F, such that the drop in the potential energy of an 
electron eFR(T ,  F) associated with a hop of optimal length becomes comparable to 
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Table 1. Values of X and S defined by equations (6) and (7) respectively, and q defined by 
equation (28) are given, for various density of states spectra of the form of equation (12) and 
the wavefunctions discussed. 

~ 

Wave function P xs 4 

LE equation (1) 0 f 1 
2 It 1 

2 t 4s (F I B )  * 1 (FllB) 
YKA equation (4) 0 f 

2 3 3 
SE equation ( 5 )  0 f 1 

2 t 1 

HH equation (3) 0 5 f (F I B )  * 1 (FIIB) 

4 

A( T ,  F). This implies, for Y - exp( - r / l j ) ,  that the critical field varies with temperature 
according to [7] 

F d T )  = A(kT/eS)  (9)  
irrespective of the shape of the density of states spectrum, with A a constant of order 
unity. This form for the temperature dependence of the critical electrical field is in 
general dependent on the electron impurity wavefunction and the density of states 
spectrum. Below we propose a method based on percolation theory to find the critical 
electric field as a function of temperature given Y(r) and the density of states spectrum. 
For the exponentially localised wavefunction, the derivation is done explicitly. For the 
other wavefunctions the results are merely stated. 

2.2. Critical electric field in the absence of B and scattering 

For an exponentially localised wavefunction the hopping probability is 

where L = 2r/E is a dimensionless parameter. Percolation through the sample will occur 
for a value of L = L, such that [ 13 

where N is the number of states per unit volume, V(L) = 4 ~ ( L l j / 2 ) ~ / 3  is the volume 
within which the electron can hop, and p is the average number of sites to which an 
electron can go. 

For motion along the electric field F the electron, initially near the Fermi energy, 
hops to a site with energy E = A + eFLlj/2 above the Fermi level, and therefore, for a 
density of states 

the number of sites an electron can hop to is 

In the limit A + 0, from (12) and (13) ,  L, can be determined by substituting x = 
L-l/@+l), and by using a first-order perturbation method to solve the resulting relation 

p ( r )  - exp(-L - A / k T )  (10) 

NV(LJ = P ( 1 1 )  

g(E) = g0EP (12) 

N = g o ( A  + eFLlj/2)P"/(p + 1). (13) 

p l I ( P + l ) x P + 4  - h P + '  - p = 0 (14) 



where 

and 

This gives 

with 
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A = [ng0E3/6(p + l)]l/@+l)A 

,U = [ngOE3/6(p + l)]l/@+l)(EeF/2). 

L, = P'/@+~)(,u + qA)-@+1)/@+4) 

q ( F ,  T )  = (A/A)[,U/P'/@+~)]@'~)/@+~).  

Substituting L, in (10) and maximisingp with respect to A gives 

A(F, T )  = (l/q){[P1/@+4)q(p + l)kT/(p + 4)]@+4)/(2p+5) - ,U}. 

The critical field corresponds to the condition A ( F ,  T )  = 0, which yields 

F,(T) = P(P + l ) / b  + 4 ) 1 ( ~ 4 .  

2.3. Critical electricalfield with B in the absence of scattering 

The YKA wavefunctions (4) can be rewritten as 

Y ( r ' )  - exp(-yr'2) 

in an appropriately chosen coordinate system, with y = t(f:&)2/3. Repeating the pro- 
cedure described above it is found that 

(22) 
Alternatively, noting that A - r'-3/@+1), it is straightforward to show that for the YKA 
wavefunction the maximum of p(r') occurs at a temperature-dependent value of r' 
suchthatr'(T) - T-[@+1)/(2p+5)1, Similarly,A(T) - T3/(2p+5).  UsingF,(T) -- A(T)/r'(T) 
gives the relation (22) within a factor of order unity. 

For HH wavefunctions (3), V(L) = 8nA2L2E/3. When B i F and for a motion along 
the electric field, the electron hops to a site with energy E = A + 2 A e F f i  above the 
Fermi level and therefore 

N = go(A + 2AeFa)P+ ' /p  + 1. (23) 
Using this new density of states per unit volume the critical electric field is obtained in 
an analogous way to that for the exponential wavefunctions, and has a temperature 
dependence 

where 

A' = [P1/(2p+6)/2eA] [(2p + 2)/(p + 5)]@+5)/(2p+6)[3(p + 1)/8nA2 ~ g ~ ] l / ( ~ p + ~ ) .  (25) 

When B 11 F ,  the potential energy change for a hop along the electric field direction is 
egFL/2. A derivation similar to the above gives 

F,(T) = A ' ( k ~ ) @ + 5 ) / ( 2 ~ + 6 )  (24) 

~m = WP + ~ ) / c P  + 311 ( k w .  (26) 
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2.4 .  Critical electric field in the presence of B and scattering 

The SE wavefunction (5 ) ,  which includes scattering events during the hop, can be treated 
on the same footing as the exponential localised wavefunction EL (1) by scaling the x and 
y coordinates. The results are the same as those in section 2.2 with the exception that 
the localisation length 5 has to be replaced by 5’ = (5b2/4)lI3. The critical field becomes 

~m = P(P + l ) / ( ~  + 4 ) 1 ( ~ 5 ’ ) .  (27) 

2.5. Summary 

The power law temperature-dependence of the critical field is listed in table 1 for the 
cases p = 0, 2 and for the wavefunctions considered. It is seen that when B I F ,  the 
relation 

Fc( T )  - Tq (28) 

depends on the asymptotic behaviour of the wavefunction. The power law is different 
for all wavefunctions considered, with the exception of the EL and SE wavefunctions. 
The latter is however the correct electron impurity wavefunction, as Y is compressed 
by the magnetic field. It follows that Y(r) can not only be identified by the experimental 
evaluation of X or S from equations (6) and (7) respectively, but also from the deter- 
mination of the power q from equation (28). This latter method is subsequently exploited 
to determine the impurity electronic wavefunction in a GaAs : Si sample, and results are 
discussed below. 

3. Experiment 

The sample used was metal-organic chemical vapour deposition (MOCVD) grown GaAs 
doped with silicon to nsi = 1.8 x 10l6 ~ m - ~ ,  which is above the critical concentration for 
metallic conduction in this material (n, = 1.6 X 10l6 ~ m - ~ ) .  The structure was an etched 
Hall bar with evaporated Au-Ni-Ge contacts. It has been shown elsewhere [ 101 (sample 
Z in [lo]) that, in the limit F+ 0 and B = 0, the conductivity of this structure has a 
metallic behaviour and that the critical magnetic field required to induce a metal- 
insulator transition is B, = 2.98 T.  The measurements in strong electric fields were 
performed using a DC two-terminal technique in a top-loading dilution refrigerator which 
operates in the temperature range 20-800 mK and which includes a superconducting 
solenoid capable of reaching B = 13.6 T. 

Measurements in crossed strong electric and magnetic fields were performed. A 
representative result of the bath temperature dependence of the Z-Frelationship, taken 
at a chosen magnetic field of magnitude B = 6 T,  is shown in figure 2. It is observed that 
all curves do merge at a temperature-dependent critical electric field. At temperatures 
below 132 mK we found that the I-F curve became temperature independent. Using a 
least-squares fit procedure described elsewhere [ll], a best fit of the temperature- 
independent data (taken at T = 132 mK) to a law of the form of (7) gives S = 0.53 t 0.08 
and Fo = 121 900 V m-’. This finding is similar to that observed in lightly doped samples 
in zero magnetic field, where transport is suggested to be by interacting exponentially 
localised electrons. It is also worth noting that in strong magnetic fields, but in the limit 
F+ 0, conduction in this sample is well described within experimental error by (6) with 
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varioustemperatures,forB = 6TandB I F .  The 
line is a least-squares fit to the data. 
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Figure 3. Temperature dependence of the res- 
istivity of the sample used, at a fixed value of the 
magnetic field B = 4.46T. The data are well 
described by (6) with X = 0.48 t 0.07, po = 
0.32 Qcm and T,(X = f )  = 2.13 K.  
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Figure 4. Temperature dependence of the critical 
field F, for the sample used, at a magnetic field of 
magnitude B = 6 T and with B i F. The relation- 
ship between the parameters is linear within error. 
The line is a least-squares fit to the data. 

X = 4. This confirms the expectation that X = S. A representative result is plotted in 
figure 3. This behaviour is similar to that reported for InSb [9] and for InP [12]. 

Within experimental error, the above result is, however, also consistent with the 
model of transport by HH interacting electrons. Defining Fc(T) = F such that 
[Z(F, Tbath) - Z(F, 132 mK)]/Z(F, 132 mK) = 2% (the result does not depend on the 
percentage chosen as long as it is small-less than about lo%), the relation Fc(T)  is 
found. The result is presented in figure 4. The analysis gives q = 1.04 k 0.08 for equation 
(28). Furthermore, from equation (27) we find for interacting electrons (p = 2 in (12)) 
a reasonable localisation length of 5 = 119 A. Thep = 2 case corresponds to the normal 
Coulomb gap system. 
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These results show unambiguously that transport in high magnetic fields for this 
system is better described by the theory which takes scattering into account [6] than by 
a system with HH (q = 0.7) or YKA (q  = f) wavefunctions in the absence of scattering. 

4. Conclusion 

It is shown that the study of the temperature dependence of the magnitude of the critical 
electric field above which variable-range-hopping conduction becomes activationless is 
a useful tool to give information on the asymptotic behaviour of the localised 
wavefunctions in strong magnetic fields. Using the procedure proposed, experimental 
data in n-type GaAs are shown to be consistent with the existence of magnetic-field- 
induced hopping transport of exponentially localised carriers in the material, in agree- 
ment with recent theories which take intermediate scattering into account. 
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